VISION-BASED LOCALIZATION FOR THE MSR SAMPLE TRANSFER ARM

Marcos Avilés ${ }^{(1)}$, David Savary ${ }^{(1)}$, Augusto Gómez ${ }^{(1)}$, Marco Mammarella ${ }^{(1)}$ Andrea Rusconi(2), Francesco Villa(2), Guido Sangiovanni(2), Davide Nicolis(3)

(1) GMV Aerospace \& Defence SAU, Spain
(2) Leonardo SpA, Italy
(3) ESA/ESTEC, Netherlands

Introduction

- The Mars Sample Return - Sample Transfer Arm is one of the ESA contributions to the MSR Campaign, and is part of the Sample Retrieval Lander
- The STA will:
- Transfer the sample tubes into the Orbiting Sample container (OS) in the Mars Ascent System (MAS), from:
- The Perseverance rover, or
- Mars terrain (dropped by the Sample Recovery Helicopters)
- Close and secure the OS lid after the completion of the tube transfer operations
- These operations need to be performed within a limited time \rightarrow high level of autonomy needed
- The vision algorithms for accurate localization of the target elements to be manipulated are key elements to this autonomy

STA Mission Operations

STA Mission Operations

Vision Algorithms in the STA

- This work focuses on the design, development and initial testing of the vision algorithms for:
- Localization of the Perseverance Bit Carousel, from where the STA collects the sample tubes
- Localization of the OS container, where the STA inserts the sample tubes
- Localization of sample tubes on the terrain left by the Sample Recovery Helicopters
- Localization of the OS Lid, to be placed onto the OS
- Localization of the Workbench, where the tubes are placed to switch the STA end effector grip type

Credit: NASA

Perseverance \& OS Localization Con-Ops

- Due to the uncertainties in the positions of the different elements to be operated, vision-based localization is performed incrementally, at three different arm camera viewpoints:
- Far Viewpoint. Based on a (ground-based) teach point location, to compute a more accurate estimation that allows a safer approach to the target
- Intermediate Viewpoint. Based on the previous estimate the arm can safely get closer to the target within the limits of the accuracy of the previously computed pose
- Close Viewpoint. Based on the already accurate estimate obtained at the medium point, the arm moves as close as possible to the target to compute the final and most accurate estimate

Perseverance \& OS Localization Pipeline

- Both scenarios follow a similar pipeline composed of three steps:
- Feature Detection: Relevant features which could be identified both in the image and in the CAD model are detected
- Feature Matching: Previously detected features are matched against a reference model (obtained from the CAD) to associate their 2D coordinates in the image with their 3D position in the model
- Pose Estimation: Based on the 2D-3D correspondences the 6DOF position of the camera is recovered by solving the Perspective-N-Point

Perseverance Localization

- Fasteners in the Bit Carousel are used as features:
- Smaller size implies lower error (error for larger circles could be small relative to their size, but large as an absolute error in px)
- They can be detected with reliability
- Both inner ring (blue) and outer ring (yellow) fasteners are used for robust matching to recover from large input errors.
- Assumes a coarse knowledge of the inner ring orientation
- Only outer ring fasteners, which are fixed, are used for pose estimation

OS Localization

- For the OS, the circular slots are used as features
- Multiple circles might be detected for the same slot due to the presence of RSTA, shadows,...
- Filtering is applied to remove circles with sizes incompatible with the viewing distance
- A grouping stage is performed to merge clusters of circles

Sample Tube Localization

- Computing the Sample Tube pose from a single image is a challenging problem due to the lack of observability, particularly for the inclination over the terrain and the Z distance (depth)
- No clear distinct features can be determined which could be detected in the image and matched against corresponding 3D features in the model
- A multi view capture from 3 different camera orientations is proposed to provide a feasible solution for the 5DOF pose estimation of the tube

Vision Algorithms - Sample Tube Localization

- Algorithm pipeline

Sample Tube Segmentation

- Segmentation performed using U-Net CNN
- Encoder section replaced with a pretrained version based on ImageNet
- Model trained with real images of the tubes on sandboxes and computed generated scenes
- Ground truth mask generation of real images performed with a custom semi-automatic tool based on Segment Anything
- Data augmentation pipeline containing random flips, rotations, and perspective transformations
- Good performances with only hundreds of real images and a relatively compact model (5.5 million parameters)

Sample Tube Localization (2D)

- 2D centre and angle estimated through the registration (via ICP) of a reference mask and the result of the segmentation step.
- The reference mask of the Sample Tube is computed based on an initial guess of the distance from the camera.
- The ICP is iterated with slightly scaled versions to get the best fit with the model.

Sample Tube Localization (3D)

- Inputs:
- Sample Tube 2D position and angle on the images
- Telemetry from the robotic arm at the different captures
- Camera intrinsic calibration
- Multi-view reconstruction and estimation of 5DOF tube pose:
- The tube centre point is computed by intersecting the vectors from each of the camera positions to the 2D centre points
- The 3D axis of the tube is computed by intersecting the planes that contain the main axis and the camera positions

Note: Due to the erroneous nature of the measurements, no exact intersection really exists. The returned value is the one that minimizes the distances to rays/planes

OS Lid \& Workbench Localization

- The localization of both the OS Lid and Workbench will be performed using visual markers, most likely AprilTags.
- The type and disposition of markers is being defined by NASA/JPL, considering the available space and the accuracy requirements.

Perseverance Localization Results

- Errors for each component in Camera Frame at different distances (Far, Intermediate and Close Viewpoints)
- The distances are given from the end-effector
- The camera is placed backwards 27 cm from the end effector.
- The largest translation errors are obtained in the Z component (depth) and the largest rotation errors are obtained in the X and Y components
- Typical behaviour of 3D-from-2D problems where there is much higher observability in the camera plane than in the depth

Component	50 cm	$\mathbf{1 0 c m}$	$\mathbf{3 c m}$
Trans X [mm]	0.266	0.065	0.049
Trans Y [mm]	0.412	0.155	0.140
Trans Z [mm]	0.754	0.328	0.412
Trans Mag [mm]	$\mathbf{0 . 8 3 0}$	$\mathbf{0 . 3 3 1}$	$\mathbf{0 . 4 0 9}$
Rot X [deg]	0.234	0.104	0.067
Rot Y [deg]	0.121	0.049	0.189
Rot Z [deg]	0.043	0.024	0.022
Rot Mag [deg]	$\mathbf{0 . 4 1 4}$	$\mathbf{0 . 2 8 7}$	$\mathbf{0 . 2 0 1}$

OS Localization

- Largest translation errors in the Z component, largest rotation errors in the X and Y components
- Errors are larger than in the Bit Carousel localization:
- The camera is further from the target ($\sim 20 \mathrm{~cm}$ further)
- The OS is smaller than the Bit Carousel: features are more concentrated in the centre of the image, reducing the observability
- The occupancy level of the OS (whether is empty or full of tubes) has little effect on the accuracy (results provided for the worst-case configuration)

Component	50 cm	$\mathbf{1 0 c m}$	$\mathbf{1 c m}$
Trans X [mm]	0.234	0.042	0.035
Trans Y [mm]	0.330	0.200	0.089
Trans Z [mm]	6.557	1.261	0.532
Trans Mag [mm]	$\mathbf{6 . 5 0 1}$	$\mathbf{1 . 2 4 0}$	$\mathbf{1 . 2 6 3}$
Rot X [deg]	2.835	0.733	0.690
Rot Y [deg]	2.246	1.547	0.775
Rot Z [deg]	0.173	0.092	0.109
Rot Mag [deg]	$\mathbf{4 . 8 6 1}$	$\mathbf{1 . 6 5 9}$	$\mathbf{1 . 1 6 4}$

Sample Tube Localization

- The segmentation step has been widely tested using both synthetic and real imagery
- Real images have been generated using:
- A visually representative tube model provided by NASA/JPL
- A COTS camera with equivalent characteristics (FOV and sensor) to the flight STA camera
- Different sandboxes replicating the appearance of the Mars terrain
- The 2D registration of the mask with the reference model resulted in accuracies better than $\mathbf{1 m m}$ and $\mathbf{0 . 4}$ degrees when observing the tube from approximately 40 cm from the camera
- Testing of the 3D Localization is still an on-going activity

Conclusions

- The algorithms have been specifically developed to take advantage of the unique characteristics of each of the elements to be localized:
- Perseverance Bit Carousel: the fasteners were used as relevant features to be matched against a reference model and solve the PnP problem.
- OS container: similar approach but in this case, the circular shape of the tube slots was used.
- Sample Tubes on the terrain: a multi-view strategy was followed to cope with the lower observability of the depth and inclination of a monocular observation
- OS Lid and workbench: AprilTag markers proposed (under assessment)
- Achieved accuracies are in all cases compatible with the requirements of autonomy for the STA operations.

Future Work

- Validation with real mock-ups and a COTS camera with similar characteristics to the one mounted on the STA is already foreseen in the short future.
- Both mock-ups of the Bit Carousel and OS will be provided by NASA/JPL being visually almost equivalent to the flight models, to ensure the representativeness of the tests.
- The proposed algorithms, integrated in a dedicated EGSE replicating the lander processor and operating the arm, will be used for their validation in Europe before delivery to NASA/JPL for their integration in the lander
.

